Filament Server System

Created by JuliaDee, source
  3D view
3D Compare
mirror
created 18/11/13 08:59


Download shape

Ever since my filament collection got past 3 or 4 spools I've been searching for the holy grail that would allow me to change filaments quickly without handling spools. It didn't take too long to figure out that if random access is a requirement, a separate holder for each spool is needed. That narrows the field pretty much to two approaches: holders on which a spool sits, bearing on its edges, and holders that involve an axle through a spool's hub. The former, in order to yield acceptably low friction, require ball or roller bearings. Since I wanted to accommodate 40+ spools, this approach was ruled out as too complex and time-consuming. I wanted something consisting of a few simple printed parts and a press-fit assembly process that would allow me to bang out 40+ holders in a few days. The TInkertoy-like result is presented here. Every single filament end is within arms' reach and I can change filaments without touching a spool. Only 7 different printed parts are necessary to cover most spool sizes on the market, at least the ones I use. These include 200x70mm (MakerBot, Prototype Supply), 160x90mm (Octave), 200x55mm (pp3dp, Bendlay), 220x55 (http://3dprintingsystems.com), Taulman, and others.

A really nice aspect of the system is that you can have multiple rows of spools, one behind the other, to maximize storage in a given shelf space. Simply feed the rear spools' filament under the front spool(s) and through its guide loop. One of the attached videos shows a rear spool in action. Use of rubber feet, especially on rear-row spools, is strongly recommended, to prevent them from creeping forward and touching spools in front.

Another great side benefit is that I've now removed the spool holders and spools previously attached to the printers, liberating at least a square foot of precious bench space.

The "funnel" attached to a gantry directly above the printer(s) is not strictly necessary, but it's convenient, keeps filament from dangling in front of my monitor, keeps all the filament ends in one place, and reduces the sideways force vector on the printer when its feeding spool is located some distance off to the side. The foam in the funnel cleans the filament, and more importantly, helps tame the unruly mass of protruding filament ends. Since it won't be easy to change the foam with 40 filaments going through it, you might want to have a separate, easily-changeable cleaner foam located at each printer.

Video of the FSS in action:

youtu.be/DE9xbywAdiQ

youtu.be/HNsTqzcEDbo

youtu.be/r5bAiAoVQeA

Full construction details are in the Instructions section. All printed parts are available on Tinkercad, search for "FSS".

User Prints

If you printed this shape, share it!

I printed this!

Instructions

You will need some 1/4" diameter oak dowels (don't use pine, use oak), and some 1" and 1-1/2" black "poly" pipe (shown in the photos), available at home improvement stores. Regular PVC pipe's wall thickness is too big, and will NOT fit in many spool hubs. You can also use thin-wall styrene tubing sold by plastics supply companies. For Taulman spools you need to find something smaller; I happened to have some styrene tubing around that fit, but you could use copper pipe.

I strongly recommend adding stick-on rubber feet to keep spools from sliding around. The ones I use are made by 3M and available from Mouser here:

mouser.com/ProductDetail/3M-Electronic-Specialty/SJ-5312-CLEAR/?qs=sGAEpiMZZMs6x5FGDTpfsNuah9WR6FTsRPC 5T%252b4YqOk%3d

for about $0.06 each.

The accompanying Excel document lists the axle diameters, axle lengths, and support dowel lengths for the various spool sizes supported.

You don't need to saw the dowels - simply measure them off, making score marks with a pair of diagonal cutters, as shown in the photos. Once scored you can snap them off with your fingers or cut them with a pair of compound-leverage lineman's pliers. Don't worry about the getting the lengths exactly right, and don't bother to sand the ends clean. It's all very forgiving of a few mm here or there.

The axle tubing is best cut with a power mitre ("chop") saw. If you use a hand saw I recommend a mitre box, otherwise the ends will not be square and the axles will be prone to falling out of the bearings.

The press-fit of the dowels into the printed parts is nice and snug, but easily done by hand (at least with parts printed on my Up). The front-back braces for the large-spool holders are optional, and I find them unnecessary if stick-on rubber feet are used; the oak dowels are very stiff and splay is minimal. Without rubber feet they might be more necessary. There is also provision for "pinning" the front-back supports with small sheet metal screws if you want the ultimate in rigidity and stability. Just drive them into the dowels with your screwdriver.


Tags

Comments

You must be logged in to comment, log in now
55mm_base_front.stl
(ver 1)

55mm_base_rear.stl
(ver 1)

70mm_base_front.stl
(ver 1)

70mm_base_rear.stl
(ver 1)

filament_funnel.stl
(ver 1)



large_spool_bearing.stl
(ver 1)

small_spool_base.stl
(ver 1)

small_spool_bearing.stl
(ver 1)

Latest Changes

Nov 18, 2013

  • Add file small_spool_bearing.stl
    By mirror at 08:59
  • Add file fss.pdf
    By mirror at 08:59
  • Add file 70mm_base_rear.stl
    By mirror at 08:59
  • Add file 55mm_base_front.stl
    By mirror at 08:59
  • Add file fss-1.pdf
    By mirror at 08:59
network map more

Forks

Be the first one to fork this shape Fork

Print Tag

If you printed this shape, please give your attribution by print this tag

Shape Tag
  1. Welcome Tutorial - The shape page

    This is a shape page, a shape can contain one or more STL files as well as extra instructions helper files..
    Press Next to continue.

  2. This is the shape gallery. Like in many sites you can see a 3D view of this shape by clicking the "3D view" button. This button appears when an image is linked to an STL file.

  3. In case you missed it, this download button would let you download the shape.

  4. Here comes the magic of ShapeDo, lets start by forking this shape.
    Forking a shape creates a full copy of the shape in your account, one which you an edit and improve on.
    Try forking this shape!

  1. Welcome Tutorial - The shape page

    This is a shape page, a shape can contain one or more STL files as well as extra instructions helper files..
    Press Next to continue.

  2. This is the shape gallery. Like in many sites you can see a 3D view of this shape by clicking the "3D view" button. This button appears when an image is linked to an STL file.

  3. In case you missed it, this download button would let you download the shape.

  4. Here comes the magic of ShapeDo, lets start by forking this shape.
    Forking a shape creates a full copy of the shape in your account, one which you an edit and improve on.

  5. Note there are extra details calculated for the shape, such as volume and file size, useful for when you want to print.

  6. Shapes can have many revisions, here you can see the version count with the latest first. By clicking on the version you can see live what has been changed in the 3D viewer or download older versions.

  7. This box will show you the history of changes made on this shape.

  8. You can see a visual representation of the history by clicking on the "network map" link, the "network map" shows the entire fork and shape history, its a powerful tool finding the exact version you want, and seeking who has the latest changes. You can also view it by clicking on the 'forks' message at the top of the page

  9. This box will show the users who forked this shape. Forks can take shapes in unusual directions.

  10. Don't forget to upload your shapes and thanks for participating our tour. We can't wait to see what you will create!

  11. Your feedback is important, please take a minute to make us get better.

  1. Congratulations

    You have created your first fork, good job!
    You made your first important step.

    Lets continue our tour...

  2. This shape is yours, you can edit and update it in any way you want.

    You can get new changes from other users that forked the original shape by pulling from them. Using the arrow on the right of the edit button opens the pull action.

    When you make changes and want to contribute back to the origin, just use the merge request to create a request to the original author. They will get an e-mail that their shape has a request, they can comment on it in case a change needs to be made.

  3. You can see here where the shape was forked from and who will get the request.

  4. Note there are extra details calculated for the shape, such as volume and file size, useful for when you want to print.

  5. Shapes can have many revisions, here you can see the version count with the latest first. By clicking on the version you can see live what has been changed in the 3D viewer or download older versions.

  6. This box will show you the history of changes made on this shape.

  7. You can see a visual representation of the history by clicking on the "network map" link, the "network map" shows the entire fork and shape history, its a powerful tool finding the exact version you want, and seeking who has the latest changes. You can also view it by clicking on the 'forks' message at the top of the page

  8. This box will show the users who forked this shape. Forks can take shapes in unusual directions.

  9. Don't forget to upload your shapes and thanks for participating our tour. We can't wait to see what you will create!

  10. Your feedback is important, please take a minute to make us get better.